Background: Laurus nobilis, commonly known as bay leaf, is widely used in global cuisine for flavouring soups and stews, as well as in baked foods and desserts. The present study aims to characterize the phytochemical composition of chloroform and methanol extracts of Laurus nobilis using Gas Chromatography-Mass Spectrometry (GC–MS) analysis. Materials and Methods: Dried Bay leaves were locally sourced, properly identified, and authenticated. The leaves were extracted using cold maceration to obtain chloroform (CELN) and methanol (MELN) extracts of Laurus nobilis. Qualitative and quantitative phytochemical screening, along with Gas Chromatography-Mass Spectrometry (GC-MS) analysis, was performed following standard protocols. Results: The qualitative analysis of CELN and MELN confirmed the presence of flavonoids, phenols, terpenoids, glycosides, steroids, saponins, alkaloids, and carbohydrates. Quantitative analysis indicated that MELN contained higher levels of phenols (11.34 mg/100g), tannins (5.20 mg/100g), and carbohydrates (16.23 mg/100g). GC-MS analysis identified 87 and 98 compounds in CELN and MELN, respectively, with 10 compounds common to both extracts. The most abundant (≥5%) compounds in MELN were Spiro(1,3,3-trimethylindoline)-2,5’-pyrrolidin-2-one (8.35%), 7,10,13-Hexadecatrienoic acid, methyl ester (12.75%), Azuleno(4,5-b)furan-2(3H)-one, 3a,4,6a,7,8,9,9a,9b-octahydro-6-methyl-3,9-bis(methylene) (9.09%), and n-Hexadecenoic acid (18.25%). For CELN, the most abundant compounds were Buta-1,3-diyne,1,4-bis(2-methoxycarbonylcyclopropyl) (5.11%), Azuleno[6,5-b]furan-2,5-dione, decahydro-4a,8-dimethyl-3-methylene-,3aR-(3aα,4a,7aα,8β,9aα) (5.75%), n-Hexadecanoic acid (5.89%), phytol (7.57%), and Benzene, 1-phenyl-4-(2,2-dicyanoethenyl) (13.91%). Conclusion: This study highlights the rich phytochemical and bioactive profile of Laurus nobilis (bay leaf) extracts, reinforcing their potential in disease management. It also underscores the need for comprehensive pharmacological investigations of its bioactive compounds to support drug discovery efforts.
Published in | International Journal of Biomedical Materials Research (Volume 13, Issue 1) |
DOI | 10.11648/j.ijbmr.20251301.12 |
Page(s) | 10-23 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2025. Published by Science Publishing Group |
Laurus nobilis, Bay Leaf, Phytochemical, Bioactive Compounds, Gas Chromatography-mass Spectrometry
Phytochemical | CELN | MELN |
---|---|---|
Flavonoid | + | + |
Phenol | + | + |
Terpenoids | + | + |
Glycoside | + | + |
Steroid | + | + |
Saponin | + | + |
Alkaloid | + | + |
Tannin | + | + |
Carbohydrate | + | + |
present + |
Phytochemicals | CELN (mg/100g) | MELN (mg/100g) |
---|---|---|
Flavonoid | 3.61 | 3.58 |
Phenol | 3.23 | 11.34 |
Terpenoids | 6.56 | 6.24 |
Glycoside | 1.24 | 1.18 |
Steroid | 0.51 | 0.61 |
Saponin | 0.26 | 0.24 |
Alkaloid | 0.14 | 0.16 |
Tannin | 1.35 | 5.20 |
Carbohydrate | 7.10 | 16.23 |
Peak Number | Retention Time | Area Time | Area % | Compound |
---|---|---|---|---|
1 | 0.811 | 3008182 | 0.07 | Ethane,1-bromo-2-chloro |
2 | 1.157 | 4857787 | 0.12 | 1,3-Propanediol,2-amino-1-(4-nitrophenyl) |
3 | 1.214 | 2546564 | 0.06 | D-Mannoheptulose |
4 | 1.253 | 1435874 | 0.03 | 2(R),3(S)-1,2,3,4-Butanetetrol |
5 | 1.308 | 3698708 | 0.09 | 11-Bromoundecanoic acid |
6 | 1.369 | 581024 | 0.01 | p-Dioxane-2,3-diol |
7 | 9.345 | 5151875 | 0.12 | 4-Flourobenzyl alcohol |
8 | 9.400 | 5227954 | 0.13 | Cyclohexane, isocyanato- |
9 | 9.429 | 6781833 | 0.16 | 1-Azabicyclo [2.2.2] octan-3-one |
10 | 9.701 | 5116255 | 0.12 | Methyl 2-furoate |
11 | 9.974 | 8264848 | 0.20 | Methyl m-tolyl carbinol |
12 | 10.184 | 22762988 | 0.55 | Eugenol |
13 | 10.648 | 17183421 | 0.41 | Benzene, 1,2-dimethoxy-4-(2-propenyl) |
14 | 10.829 | 4575630 | 0.11 | Naphthalene, 2,7-dimethyl |
15 | 11.004 | 13045282 | 0.31 | Naphthalene, 2,7-dimethyl- |
16 | 11.200 | 8296130 | 0.20 | 3-Allyl-6-methoxyphenol |
17 | 11.573 | 7023918 | 0.17 | 2-Naphthalenamine, 1,2,4a,5,6,7,8,8a-octahydro-4a-methyl |
18 | 11.606 | 4615619 | 0.11 | Benzene, 1,2-dimethoxy-4-(1-propenyl) |
19 | 11.642 | 5416863 | 0.13 | Azulene, 1,2,3,3a,4,5,6,7-octahydro-1,4-dimethyl-7- (1-methylethenyl) |
20 | 11.985 | 20086280 | 0.48 | 2H-1-Benzopyran-2-one,7,8-dihydroxy-6-methoxy |
21 | 12.034 | 12000733 | 0.29 | 2,4,4-Trimethyl-3-(3-methylbutyl) cyclohex-2-enone |
22 | 12.070 | 12313996 | 0.30 | 3,6-Dimethyl-2,3,3a,4,5,7a-hexahydrobenzofuran |
23 | 12.135 | 15463330 | 0.37 | m-Xylene-α, ἀ-dithiol |
24 | 12.189 | 18205803 | 0.44 | 3,6-Dimethyl-2,3,3a,4,5,7a-hexahydro-1-benzofuran |
25 | 12.286 | 11953887 | 0.29 | 1H-Indole-2,3-dione, 7-fluro- |
26 | 12.337 | 35495123 | 0.86 | Propan-1-one, 1-[4-(1-methylethyl)-2-nitrosophenyl] |
27 | 12.476 | 8459475 | 0.20 | 1-Cyclohexene-1-methanol |
28 | 12.548 | 4637964 | 0.11 | 3-buten-2-one,4-(5,5-dimethyl-1-oxaspiro [2,5] oct-4-yl |
29 | 12.611 | 13608025 | 0.33 | Acetic acid, 2,6,6-trimethyl-3-methylene-7-(3-oxobutylidene) oxepane-2-yl ester |
30 | 12.709 | 13190332 | 0.32 | 1-Naphthalenol, decahydro-1,4a-dimethyl-7-(1-methylethylidene) |
31 | 12.815 | 49778025 | 1.20 | Benzene methanol, 2,4-dimethyl- |
32 | 12.995 | 86277176 | 2.08 | 2-Naphthalenemethanol, decahydro- α, α, 4a-trimethyl-8-methylene |
33 | 13.127 | 23710126 | 0.57 | Naphthalene, 1,2,3,4,4a,5,6,8a-octahydro-4a,8-dimethyl-2-(1-methylethenyl) |
34 | 13.276 | 14062328 | 0.34 | Vitamin A aldehyde |
35 | 13.301 | 10021927 | 0.24 | Bicyclo [6.1.0] non-1-ene |
36 | 13.495 | 10337093 | 0.25 | Spiro [4.5] decan-7-one,1,8-dimethyl-8,9-epoxy-4-isopropyl |
37 | 13.600 | 26923226 | 0.65 | Tricyclo [5.2.2.0(1,6)] undecane-3-ol,2-methylene-6,8,8-trimethyl |
38 | 13.643 | 31445641 | 0.76 | 2,9-Heptadecadiene-4,6-diyn-8-ol, (Z, E) |
39 | 13.927 | 21968592 | 0.53 | 4-Hexen-1-ol,6-(2,6,6-trimethyl-1-cyclohexenyl)-4-methyl |
40 | 14.087 | 48133156 | 1.16 | 3,4-Dimethoxy-6-amino toluene |
41 | 14.256 | 52266600 | 1.26 | 2-(4a,8-Dmethyl-1,2,3,4,4a,5,6,7-octahydro-naphthalen-2yl)-prop-2-en-1-ol |
42 | 14.304 | 8605359 | 0.21 | 3-Chlorobicyclo (2.2.1) heptan-2-one oxime |
43 | 14.351 | 29004120 | 0.70 | 1,4-Methanoazulen-7-ol, decahydro-4,8,8,9-tetramethyl |
44 | 14.390 | 16038041 | 0.39 | 1H-Indene, 1-ethylideneoctahydro-7a-methyl-, (1Z,3aα, 7aβ) |
45 | 14.479 | 48231296 | 1.16 | Benzene, 1-(bromomethyl)-4-(1-methylethyl)- |
46 | 14.649 | 65755712 | 1.59 | Pentadecanoic acid, 14-methyl-, methyl ester |
47 | 14.701 | 13677417 | 0.33 | Caryophyllene-(I1) |
48. | 14.724 | 7956616 | 0.19 | Bicyclo [5.1.0] octan-2-one,4,6-disopropylidene-8,8-dimethyl |
49 | 14.759 | 33314061 | 0.80 | 9-Isopropyl-1-methyl-2-methylene-5-oxatricyclo [5.4.0.0(3,8)] undecane |
50 | 14.892 | 30613192 | 0.74 | 3,6-Nonadien-5-one,2,2,8,8-tetramethyl |
51 | 15.252 | 756133195 | 18.25 | n-Hexadecanoic acid |
52 | 15.339 | 13422097 | 0.32 | 6H-Indolo[3,2,1-de][1,5]naphthyr... |
53 | 15.418 | 48017569 | 1.16 | 3H-Naphtho[2,3-b]furan-2-one, 4-... |
54 | 15.519 | 40862843 | 0.99 | 1H-2,6-Methano-2,3-benzodiazocin-8-ol,3,4,5,6-tetrahydro-3,6,11-trimethyl |
55 | 15.626 | 89157674 | 2.15 | 3(4H)-Phenanthrenone, 4a, 4b,5,6,7,8,8a,9,10,10a-decahydro-4b,8,8-trimethyl |
56 | 15.700 | 78104402 | 1.89 | Isoaromadendrene epoxide |
57 | 15.919 | 376486592 | 9.09 | Azuleno[4,5-b] furan-2(3H)-one, 3a,4,6a,7,8,9,9a,9b-octahydro-6-methyl-3,9bis(methylene) |
58 | 15.986 | 95209816 | 2.30 | Azuleno[4,5-b] furan-2(3H)-one, 3a,4,6a,7,8,9,9a,9b-octahydro-6-methyl-3,9bis(methylene) |
59 | 16.068 | 16786026 | 0.41 | Ethyl 5,8,11,14,17-eicosapentaenoate |
60 | 16.347 | 527432505 | 12.73 | 7,10,13-Hexadecatrienoic acid, methyl ester |
61 | 16.391 | 81432636 | 1.97 | 9,12,15-Octadecatrienoic acid, (Z, Z, Z) |
62 | 16.439 | 89760565 | 2.17 | Octadecanoic acid |
63 | 16.465 | 24653128 | 0.60 | Piperidine, 1-(1-oxo-3-phenyl-2-propenyl)- |
64 | 16.761 | 10630244 | 0.26 | Propanoic acid, 2-methyl-, (decahydro-6a-hydroxy-9a-methyl-3-methylene-2,9dioxoazuleno[4,5-b] furan-6-yl) methyl ester |
65 | 16.785 | 5441689 | 0.13 | 4-Methyl-3-(3-nitrophenyl)-6-phenyl-5,6-dihydro4H- [1,2,4,5] oxatriazine |
66 | 16.809 | 6331608 | 0.15 | Vitamin A aldehyde |
67 | 16.899 | 33345261 | 0.80 | Retinoic acid |
68 | 17.046 | 47774015 | 1.15 | Azulene, 1,2,3,4,5,6,7,8-octahyd... |
69 | 17.227 | 148742319 | 3.59 | 7-Methyl-5-oxo-2-phenyl-3,5-dihydro-indolizine-6-carbonitrile |
70 | 17.278 | 44285027 | 1.07 | 1H-Cycloprop[e]azulene, decahydro-1,1,4,7-tetramethyl |
71 | 17.475 | 345965480 | 8.35 | Spiro[1,3,3-trimethylindoline]-2,5’-pyrrolidin-2-one |
72 | 17.621 | 48129354 | 1.16 | 1-Acetylpyrene |
73 | 17.751 | 112838522 | 2.72 | Buta-1,3-diyne, 1,4-bis(2-methoxycarbonylcyclopropyl) |
74 | 17.895 | 27759994 | 0.67 | Coumarin-6-ol, 4,4,7-trimethyl-5-nitro-3,4-dihydro- |
75 | 17.977 | 11063078 | 0.27 | 2-Furancarboxylic acid, 5-(4-amino-2-chlorophenyl)-, methyl ester |
76 | 18.108 | 4750667 | 0.11 | 1-Docosanol, formate |
77 | 18.356 | 4974185 | 0.12 | 4-(4-Methoxyphenyl)-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline |
78 | 18.413 | 5044550 | 0.12 | Phthalic acid, neopentyl octyl ester |
79 | 19.072 | 3230939 | 0.08 | N-(4-Isopropylbenzyl)-3-phenylpropionamide |
80 | 19.300 | 5482330 | 0.13 | Tetracosanoic acid, methyl ester |
81 | 19.539 | 4723021 | 0.11 | [2-(4-methyphenyl)-[benzo(f)(1-nickela-2,3-diazaindene)] -cyclopentadienyl |
82 | 19.596 | 3298926 | 0.08 | Silane, (estra-1,3,5(10),16-tetraen-3-yloxy) trimethyl- |
83 | 19.964 | 38356051 | 0.93 | 3-Acetyl-1-(4-iodophenyl)-5-phenyl-4,5-dihydro-1H- [1,2,4] triazine-6-one |
84 | 20.085 | 47762010 | 1.15 | Bis(2’-hydroxy-3’-isopropylisobutyrophenonato) beryllium(ii) |
85 | 20.184 | 3025442 | 0.07 | Bis(2’-hydroxy-3’-isopropylisobutyrophenonato) beryllium(ii) |
86 | 21.993 | 12451079 | 0.30 | Vitamin E |
87 | 24.462 | 6996235 | 0.17 | β-Sitosterol |
Peak number | Retention time | Area time | Area % | Compound |
---|---|---|---|---|
1 | 0.796 | 3046906 | 0.09 | 1-Chloroethyl sulfone |
2 | 0.848 | 1791814 | 0.05 | Methylene Chloride |
3 | 0.925 | 2036079 | 0.06 | Trichloroacetic acid, 2-chloroethyl ester |
4 | 8.189 | 21496905 | 0.63 | Bicyclo [4.1.0] hept-2-ene, 3,7,7-trimethyl |
5 | 9.603 | 13707160 | 0.40 | Bicyclo [4.4.1] undeca-1,3,5,7,9-pentaene |
6 | 10.015 | 130518984 | 3.83 | 3-Cyclohexane-1-methanol, α, α, 4-trimethyl-, acetate |
7 | 10.196 | 42323632 | 1.24 | Eugenol |
8 | 10.658 | 46358985 | 1.36 | Benzene, 1,2-dimethoxy-4-(2-propenyl) |
9 | 10.948 | 17898517 | 0.53 | Pyrazine, 2-methoxy-3-(1-methylethyl)- |
10 | 11.089 | 4377074 | 0.13 | 2-Propen-1-ol, 3-phenyl-, acetate |
11 | 11.209 | 7324346 | 0.22 | Propenoic acid, 3-(2-thienyl)-4-nitrophenyl ester |
12 | 11.423 | 7136998 | 0.21 | 1H-Cycloprop[e]azulene, decahydro-1,1,7-trimethyl-4-methylene |
13 | 11.560 | 9607464 | 0.28 | Ethanone, 1-(1,4-dimethyl-3-cyclohexane-1-yl) |
14 | 11.602 | 3792058 | 0.11 | Benzene, 1,2-dimethoxy-4-(1-propenyl) |
15 | 11.640 | 4358674 | 0.13 | Cyclohexane, 6-ethenyl-6-methyl-1-(1-methylethyl)-3-(1-methylethylidene |
16 | 11.784 | 5317712 | 0.16 | 1,2-Ethanediol,1,2-dimyrtenyl- |
17 | 11.840 | 5934614 | 0.17 | Ethanone, 1-(1,4-dimethyl-3-cyclohexan-1-yl)- |
18 | 11.993 | 28891803 | 0.85 | Benzene, 1,2,4-trimethoxy-5-(1-propenyl)-, (Z)- |
19 | 12.044 | 5985000 | 0.18 | 2H-1,2,3,4-Tetrazole-2-acetamide, N-(1-ethyl-1-methyl-2-propynyl)-5-(2-thienyl)-. |
20 | 12.279 | 5055948 | 0.15 | Ethanone, 1-(3,5-dimethylpyrazinyl)- |
21 | 12.336 | 22039135 | 0.65 | 1H-Cycloprop[e]azulen-7-ol, decahydro-1,1,7-trimethyl-4-methylene-, [1ar-(1aα,4aα,7β,7aβ,7bα)]- |
22 | 12.363 | 8929863 | 0.26 | 9-Isopropyl-1-methyl-2-methylene-5-oxatricyclo [5.4.0.0(3,8)]undecane. |
23 | 12.471 | 5092726 | 0.15 | 1R,3Z,9s-4,11,11-Trimethyl-8-methylenebicyclo [7.2.0]undec-3-ene |
24 | 12.569 | 4286747 | 0.13 | 1R,4S,7S,11R-2,2,4,8-Tetramethyltricyclo [5.3.1.0(4,11)] undec-8-ene |
25 | 12.604 | 6337061 | 0.19 | 1,3,5,6-Tetramethyladamantane |
26 | 12.699 | 6304228 | 0.19 | Naphthalene,1,2,3,5,6,7,8,8a-octahydro-1,8a-dimethyl-7-(1-methylethyenyl) |
27 | 12.815 | 21866551 | 0.64 | 10,10-Dimethyl-2,6-dimethylenebicyclo [7.2.0] undecane-5β-ol |
28 | 12.850 | 9318615 | 0.27 | Benzene, 1,2,3-trimethoxy-5-(2-propenyl)- |
29 | 12.980 | 46385244 | 1.36 | 2-Naphthalenemethanol, decahydro-α,α,4a-trimethyl-8-methylene-, [2R-(2α,4aα,8aβ)]- |
30 | 13.043 | 6004299 | 0.18 | 1,4-Dimethyl-8-isopropylidenetricyclo[5.3.0.0(4,10)]decane |
31 | 13.081 | 3293043 | 0.10 | α.-Farnesene |
32 | 13.121 | 5730777 | 0.17 | Isoaromadendrene epoxide |
33 | 13.247 | 13733636 | 0.40 | Benzene, 1-(2-chloroethyl)-2-(trifluoromethyl) |
34 | 13.291 | 3717824 | 0.11 | Spiro [2.5] octane, 5,5-dimethyl-4-(3-oxobutyl) |
35 | 13.359 | 3555832 | 0.10 | Bicyclo [7.2.0] undec-4-ene,4,11,11, trimethyl-8-methylene |
36 | 13.387 | 2606515 | 0.08 | Isoaromadendrene epoxide |
37 | 13.425 | 3122097 | 0.09 | 1,1-Dichloro-2-methyl-3-(4,4-diformyl-1,3-butadien-1-yl) cyclopropane |
38 | 13.486 | 2570119 | 0.08 | 1H-Cycloprop[e]azulene, decahydro-1,1,7-trimethyl-4-methylene-, [1aR-(1aα,4aα,7αβ,7bα)] |
39 | 13.571 | 19720689 | 0.58 | 2H-2a,7-Methanoazuleno[5,6-b] oxirene, octahydro-3,6,6,7a-tetramethyl |
40 | 13.634 | 2261804 | 0.07 | Cycloheptane,4-methylene-1-methyl-2-(2-methyl-1-propen-1-yl)-1-vinyl |
41 | 13.717 | 5159902 | 0.15 | Benzoic acid, 2-amino-3-hydroxy |
42 | 13.917 | 8726130 | 0.26 | Felbinac |
43 | 14.052 | 16404823 | 0.48 | s-Triazolo[4,3-a] pyrazine,5,8-dimethyl-3-(methylthio) |
44 | 14.169 | 2472656 | 0.07 | Cyclopropa [c, d]pentalene-1,3-dione, hexahydro-4-(2-methyl-2-propenyl)-2,2,4-trimethyl |
45 | 14.215 | 17355823 | 0.51 | Longifolenaldehyde |
46 | 14.312 | 21526835 | 0.63 | 2-Hydroxy-2,4,4-trimethyl-3-(3-methylbuta-1,3-dienyl) cyclohexnone |
47 | 14.460 | 24206192 | 0.71 | 1,3,4-Oxadiazole,2-[3-(4-flurophenyl)-1H-pyrazol-5-yl]- |
48 | 14.647 | 45080147 | 1.32 | trans-Z-α.-Bisabolene epoxide |
49 | 14.713 | 12829679 | 0.38 | 1R,3Z,9s-4,11,11-Trimethyl-8-methylenebicyclo[7.2.0]undec-3-ene |
50 | 14.754 | 17032444 | 0.50 | Calarene epoxide |
51 | 14.797 | 15221631 | 0.45 | 5-Isopropylidene-6-methyldeca-3,6,9-trien-2-one |
52 | 14.878 | 21600102 | 0.63 | 1H-Indene,1-ethylideneoctahydro-7a-methyl-, (1E,3aα,7aβ) |
53 | 15.005 | 138517678 | 4.07 | p-(m-Hydroxyphenoxy)benzoic acid |
54 | 15.052 | 33936869 | 1.00 | 4H-3,1-Benzoxazine,1,2,4arel,5trans, 6,7,8trans,8acis-octahydro-5,8-methano-1methyl-2(phenylimino) |
55 | 15.080 | 27543426 | 0.81 | n-Hexadecanoic acid |
56 | 15.190 | 200632389 | 5.89 | n-Hexadecanoic acid |
57 | 15.237 | 26771143 | 0.79 | Naphthalene, 1,2,3,5,6,7,8,8a-octahydro-1,8a-dimethyl-7-(1-methylethenyl)-, [1R-(1α,7β,8aα)]- |
58 | 15.330 | 18885633 | 0.55 | Caryophyllene oxide |
59 | 15.405 | 36689855 | 1.08 | 17-Octadecene-9,11-diynoic acid, 8-oxo-, methyl ester |
60 | 15.496 | 24234808 | 0.71 | 11H-Indeno(1,2-b)quinoline |
61 | 15.633 | 125684528 | 3.69 | Ambrosin |
62 | 15.693 | 32670814 | 0.96 | 1,4-Methanoazulene decahydro-4,8,8-trimethyl-9-methylene-, [1S-(1α,3aβ,4α,8aβ)] |
63 | 15.919 | 257517836 | 7.57 | Phytol |
64 | 15.941 | 68359838 | 2.01 | Azuleno [4,5-b] furan-2(3H)-one,3a,4,6a,7,8,9,9a,9b-octahydro-6-methyl-3,9-bis(methylene)-[3As-(3aα,6aα,9aα,9bβ)]- |
65 | 15.999 | 130236207 | 3.83 | Azuleno [4,5-b] furan-2(3H)-one,3a,4,6a,7,8,9,9a,9b-octahydro-6-methyl-3,9-bis(methylene)-[3As-(3aα,6aα,9aα,9bβ)]- |
66 | 16.049 | 7118677 | 0.21 | N-(3,4,5-Trimethoxybenzylidine) isopropylamine |
67 | 16.101 | 11001444 | 0.32 | 6-Methyl-3,3'-bi(1H-indole) |
68 | 16.279 | 160337905 | 4.71 | 9,12-Octadecadienoic acid (Z,Z)- |
69 | 16.306 | 45855473 | 1.35 | 7,10,13-Hexadecatrienoic acid, methyl ester |
70 | 16.335 | 55277938 | 1.62 | 9,12,15-Octadecatrienoic acid (Z, Z, Z) |
71` | 16.372 | 18051481 | 0.53 | D-Alanine, N-(2,5-ditrifluoromethylbenzoyl)-, hexadecyl ester |
72 | 16.499 | 11637972 | 0.34 | Phenol,4,4’-(methylethylidene)bis- |
73 | 16.529 | 1892645 | 0.06 | 1-Phenanthrenemethanol, 1,2,3,4,4a,9,10,10a-octahydro-1-methyl-, [1S-(1α,4aα,10aβ)]- |
74 | 16.801 | 7542645 | 0.22 | [2-(1-butenyl)-2,2-dimethylcyclopropyl] acetonitrile |
75 | 16.866 | 15484606 | 0.45 | Benzeneacetamide, α-ethyl- |
76 | 17.029 | 50938586 | 1.50 | Benzene, 1,3,5-tributyl- |
77 | 17.239 | 195813719 | 5.75 | Azuleno[6,5-b]furan-2,5-dione,decahydro-4a,8-dimethyl-3-methylene-, [3aR-(3aα,4aβ,7aα,8β,9aα)]- |
78 | 17.307 | 13097444 | 0.38 | Hex-1-yne, 6-benzyloxy- |
79 | 17.519 | 473361687 | 13.91 | Benzene, 1-phenyl-4-(2,2-dicyanoethenyl) |
80 | 17.556 | 7308815 | 0.21 | Dicyclooctanopyridazine |
81 | 17.669 | 81493286 | 2.39 | Coumarine, 8-allyl-7-hydroxy-6-ethyl-4-methyl |
82 | 17.793 | 173776292 | 5.11 | Buta-1,3-diyne,1,4-bis(2-methoxycarbonylcyclopropyl) |
83 | 17.821 | 7396321 | 0.22 | Silane, dimethyl(2-naphthoxy) ethoxy- |
84 | 17.942 | 37101465 | 1.09 | 3,3'-Difluoro-1,1'-biphenyl |
85 | 17.995 | 4026095 | 0.12 | 3-Heptyne, 7-bromo-2,2-dimethyl- |
86 | 18.031 | 2864819 | 0.08 | 2(5H)-Furanone, 4-(acetyloxy)-3,5-dimethyl |
87 | 18.352 | 2490364 | 0.07 | 2-Ethylidenehydrazono-3methyl-4-chloro-2,3-dihydrobenzothiazole |
88 | 18.418 | 5444559 | 0.16 | Phthalic acid, 2,7-dimethyloct-7-en-5yn-4-yl-pentyl ester |
89 | 18.512 | 3715125 | 0.11 | 4-Chloro-3-ethyl-1,3-benzothiazol-2(3H)-one |
90 | 18.554 | 3540303 | 0.10 | 3-Chloro-4-(dichloromethyl)-5-hydroxy-2(5H)- furanone |
91 | 18.856 | 2363482 | 0.07 | Bicyclo [3.1.0] hexane,4-methylene-1,6-diphenyl |
92 | 19.068 | 2973834 | 0.09 | Octadecane,3-ethyl-5-(2-ethylbutyl)- |
93 | 19.591 | 1233693 | 0.04 | 5-p[-Anisyloxy]-6-methoxy-8-nitroquinoline |
94 | 19.960 | 25919482 | 0.76 | Bis(2’-hydroxy-3’-isopropylisobutyrophenonato) beryllium(ⅱ) |
95 | 20.080 | 33895435 | 1.00 | 1-Phenanthrenecarboxylic acid, tetradecahydro-1,4a,8-trimethyl-7-[2-[2-(methylamino) ethoxyl]-2-oxoethylidene]-9-oxo-, methyl ester, [1S-1α,4aα,4bβ,7E,8β,8aα,10aβ)] |
96 | 20.183 | 4779398 | 0.14 | Pentatriacontane,13-docosenylidene |
97 | 21.996 | 37593184 | 1.10 | Vitamin E |
98 | 24.444 | 5414430 | 0.16 | Estra-1,3,5(10)-triene-16,17-dione, 3-[(trimethylsilyl)oxy]-, bis(O-methyloxime) |
S/N | Compound | CELN Area % | MELN Area % | Pharmacological/Health Benefits |
---|---|---|---|---|
1 | Eugenol | 0.55 | 1.24 | Anti-inflammatory [41] Antifungal , antioxidant, antibacterial, antimicrobial, anaesthetic, muscle relaxant [16] and anticancer potential [42, 43] [44] |
2 | Benzene, 1,2-dimethoxy-4-(2-propenyl) | 0.41 | 1.36 | Antibacterial and antioxidant , antifungal [43] [45] |
3 | Benzene, 1,2-dimethoxy-4-(1-propenyl) | 0.11 | 0.11 | Antibacterial, antifungal and antioxidant [16] |
4 | n-Hexadecanoic Acid (Palmitic Acid) | 18.25 | 5.89 | Anti-inflammatory , antimicrobial [46] , antiplasmodial [47] , antioxidant [48] , wound healing [49] [50] |
5 | 7,10,13-Hexadecatrienoic Acid, Methyl Ester | 12.73 | 1.35 | Antioxidant, anti-inflammatory [51] |
6 | 9,12,15-Octadecatrienoic Acid (Z, Z, Z) (Alpha-Linolenic Acid) | 1.97 | 1.62 | Anti-inflammatory, antimicrobial, antioxidant [52, 53] |
7 | Vitamin E | 0.30 | 1.10 | Antioxidant , immunomodulatory [54] , skincare benefits [55] [56, 57] |
8 | Isoaromadendrene Epoxide | 1.89 | 0.17 | Antimicrobial, anti-cancer [58, 59] |
9 | Azuleno[4,5-b]furan-2(3H)-one, 3a,4,6a,7,8,9,9a,9b-octa hydro-6-methyl-3,9-bis(methylene) | 9.09 | 3.83 | Antibacterial , anticancer [60, 61] [62] |
10 | Caryophyllene (and Caryophyllene Oxide) | 0.33 | 0.55 | Analgesic and anticancer , anti-inflammatory and cytotoxic [63] [64] |
GC–MS | Gas Chromatography-mass Spectrometry |
CELN | Chloroform Extracts of Laurus nobilis |
MELN | Methanol Extracts of Laurus nobilis |
[1] | Ovili-Odili BZ, Adienbo OM, Daubry TME, Chinko BC. Phytochemical Profiling and Nutraceutical Benefits of Methanol Leaf Extracts from Datura alba ness. Asian Plant Research Journal. 2024; 12(6): 1-11. |
[2] | Adewunmi CO, Ojewole JAO. Editorial-Safety of traditional medicines, complementary and alternative medicines in Africa. African journal of traditional, complementary and alternative medicines. 2004; 1(1): 1-3. |
[3] | Chinko BC, Dapper DV, Adienbo OM, Egwurugwu JN, Uchefuna RC. Biochemical Evaluation of the Effects of Hydromethanolic Extracts of Dioscorea bulbifera in Wistar Rats. IOSR Journal of Dental and Medical Sciences. 2016; 5(9): 105-10. |
[4] | World Health Organization. WHO global report on traditional and complementary medicine 2019: World Health Organization; 2019. |
[5] | Fabricant DS, Farnsworth NR. The value of plants used in traditional medicine for drug discovery. Environmental health perspectives. 2001; 109(suppl 1): 69-75. |
[6] | Leonti M, Casu L. Traditional medicines and globalization: current and future perspectives in ethnopharmacology. Frontiers in pharmacology. 2013; 4: 92. |
[7] | Chaachouay N, Zidane L. Plant-derived natural products: a source for drug discovery and development. Drugs and Drug Candidates. 2024; 3(1): 184-207. |
[8] | Atanasov AG, Waltenberger B, Pferschy-Wenzig E-M, Linder T, Wawrosch C, Uhrin P, et al. Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnology advances. 2015; 33(8): 1582-614. |
[9] | Ekor M. The growing use of herbal medicines: issues relating to adverse reactions and challenges in monitoring safety. Frontiers in pharmacology. 2014; 4: 177. |
[10] | Saronee F, Amah-Tariah FS, Chinko BC, Dapper DV. GC-MS and proximate analysis of the hydromethanol extract of Craterispermum schweinfurthi leaves. South Asian Res. J. Nat. Prod. 2023; 6(2): 101-9. |
[11] | Tainter DR, Grenis AT. Spices and seasonings: a food technology handbook: John Wiley & Sons; 2001. |
[12] | Davidson A. The Oxford companion to food: OUP Oxford; 2014. |
[13] | Batool S, Khera RA, Hanif MA, Ayub MA. Bay leaf. Medicinal plants of South Asia: Elsevier; 2020: 63-74. |
[14] | Spence C. Why cook with bay leaves? International Journal of Gastronomy and Food Science. 2023; 33: 100766. |
[15] | Khodja YK, Bachir-Bey M, Belmouhoub M, Ladjouzi R, Dahmoune F, Khettal B. The botanical study, phytochemical composition, and biological activities of Laurus nobilis L. leaves: A review. International Journal of Secondary Metabolite. 2023; 10(2): 269-96. |
[16] | Ali ZA, Al Musa RS, Ethafa ES, Hannosh WS. Study of Biologically Active Compounds and Inhibitory Activity of Bay Leaves Laurus nobilis L. Indonesian Journal on Health Science and Medicine. 2025; 2(2): 1-12. |
[17] | Khalil NA, ALFaris NA, ALTamimi JZ, Mohamed Ahmed IA. Anti‐inflammatory effects of bay laurel (Laurus nobilis L.) towards the gut microbiome in dextran sodium sulfate induced colitis animal models. Food Science & Nutrition. 2024; 12(4): 2650-60. |
[18] | Guedouari R, Nabiev M. Anti-inflammatory activity of different extracts from Laurus nobilis growing in Algeria. Algerian Journal of Environmental Science and Technology. 2021; 7(4): 2115-20. |
[19] | Sayyah M, Saroukhani G, Peirovi A, Kamalinejad M. Analgesic and anti‐inflammatory activity of the leaf essential oil of Laurus nobilis Linn. Phytotherapy research. 2003; 17(7): 733-6. |
[20] | Rajeswari VD, Eed EM, Elfasakhany A, Badruddin IA, Kamangar S, Brindhadevi K. Green synthesis of titanium dioxide nanoparticles using Laurus nobilis (bay leaf): Antioxidant and antimicrobial activities. Applied Nanoscience. 2021: 1-8. |
[21] | Taban A, Saharkhiz MJ, Niakousari M. Sweet bay (Laurus nobilis L.) essential oil and its chemical composition, antioxidant activity and leaf micromorphology under different extraction methods. Sustainable Chemistry and Pharmacy. 2018; 9: 12-8. |
[22] | Bennadja S, Kaki YTA, Djahoudi A, Hadef Y, Chefrour A. Antibiotic activity of the essential oil of laurel (Laurus nobilis L.) on eight bacterial strains. Journal of Life Sciences. 2013; 7(8): 814. |
[23] | Rizwana H, Al Kubaisi N, Al-Meghailaith NN, Moubayed N, Albasher G. Evaluation of Chemical Composition, Antibacterial, Antifungal, and Cytotoxic Activity of Laurus nobilis L Grown in Saudi Arabia. Journal of Pure & Applied Microbiology. 2019; 13(4): 2073-85. |
[24] | Speroni E, Cervellati R, Dall'Acqua S, Guerra MC, Greco E, Govoni P, Innocenti G. Gastroprotective effect and antioxidant properties of different Laurus nobilis L. leaf extracts. Journal of Medicinal Food. 2011; 14(5): 499-504. |
[25] | Afifi FU, Khalil E, Tamimi SO, Disi A. Evaluation of the gastroprotective effect of Laurus nobilis seeds on ethanol induced gastric ulcer in rats. Journal of ethnopharmacology. 1997; 58(1): 9-14. |
[26] | Mohammed RR, Omer AK, Yener Z, Uyar A, Ahmed AK. Biomedical effects ofLaurus nobilis L. leaf extract on vital organs in streptozotocin-induced diabetic rats: Experimental research. Annals of Medicine and Surgery. 2021; 61: 188-97. |
[27] | El-Kholie E, El-Eskafy A, Hegazy N. Effect of Bay Leaves (Laurus nobilis, L) and cardamom seeds (Elettaria cardamomum, L.) as anti-diabetic agents in alloxan-induced diabetic rats. Journal of Home Economics-Menofia University. 2023; 33(1): 77-88. |
[28] | AL-Samarrai OR, Naji NA, Hameed RR. Effect of Bay leaf (Laurus nobilis L.) and its isolated (flavonoids and glycosides) on the lipids profile in the local Iraqi female rabbits. Tikrit Journal of Pure Science. 2017; 22(6): 72-5. |
[29] | Ibrahim HS, Rezq AA, Ismail BA. Studying the effect of Hawthorn (Crataegus pinnatifida) and Bay (Laurus nobilis) leaves mixture on body weight in Obese Rats. Journal of Pharmaceutical Negative Results. 2022: 5203-24. |
[30] | El Faqer O, Rais S, Elkoraichi I, El Amrani A, Dakir M, Zaid Y, Mtairag EM. Phytochemical characterization and immunomodulatory effects of aqueous and ethanolic extracts and essential oil of Moroccan Laurus nobilis L. (Lauraceae) on human neutrophils. Journal of HerbMed Pharmacology. 2022; 12(1): 92-9. |
[31] | Shehata AI, Shahin SA, Taha SA, Elmaghraby AM, Alhoshy M, Soliman AA, et al. Essential Oil of Bay Laurel (Laurus nobilis) Enhances Growth and Immunity in Cold‐Stressed Nile Tilapia (Oreochromis Niloticus). Journal of Animal Physiology and Animal Nutrition. 2025. |
[32] | Ham A, Kim B, Koo U, Nam K-W, Lee S-J, Kim KH, et al. Spirafolide from bay leaf (Laurus nobilis) prevents dopamine-induced apoptosis by decreasing reactive oxygen species production in human neuroblastoma SH-SY5Y cells. Archives of pharmacal research. 2010; 33: 1953-8. |
[33] | Cho E-Y, Lee S-J, Nam K-W, Shin J, Oh K-b, Kim KH, Mar W. Amelioration of oxygen and glucose deprivation-induced neuronal death by chloroform fraction of bay leaves (Laurus nobilis). Bioscience, biotechnology, and biochemistry. 2010; 74(10): 2029-35. |
[34] | Bennett L, Abeywardena M, Burnard S, Forsyth S, Head R, King K, et al. Molecular size fractions of bay leaf (Laurus nobilis) exhibit differentiated regulation of colorectal cancer cell growth in vitro. Nutrition and cancer. 2013; 65(5): 746-64. |
[35] | Saab AM, Tundis R, Loizzo MR, Lampronti I, Borgatti M, Gambari R, et al. Antioxidant and antiproliferative activity of Laurus nobilis L.(Lauraceae) leaves and seeds essential oils against K562 human chronic myelogenous leukaemia cells. Natural Product Research. 2012; 26(18): 1741-5. |
[36] | Singh BP, Bangar SP, Alblooshi M, Ajayi FF, Mudgil P, Maqsood S. Plant-derived proteins as a sustainable source of bioactive peptides: recent research updates on emerging production methods, bioactivities, and potential application. Critical reviews in food science and nutrition. 2023; 63(28): 9539-60. |
[37] | Nerlekar N, Patil P, Khot S, Kulkarni A, Dandge P, Berde A, et al. Cold maceration extraction of wild fruit Terminalia bellirica (Gaertn.) Roxb: exploring its bioactives for biomedical applications. Preparative Biochemistry & Biotechnology. 2024: 1-19. |
[38] | Lezoul NEH, Belkadi M, Habibi F, Guillén F. Extraction processes with several solvents on total bioactive compounds in different organs of three medicinal plants. Molecules. 2020; 25(20): 4672. |
[39] | Evans WC. Trease and Evans' Pharmacognosy. 16th ed. New York: Elsevier Health Sciences; 2009. |
[40] | Harborne JB. Phytochemical Methods: Springer Dordrecht; 1984. |
[41] | Fantasma F, Samukha V, Aliberti M, Colarusso E, Chini MG, Saviano G, et al. Essential Oils of Laurus nobilis L.: From Chemical Analysis to In Silico Investigation of Anti-Inflammatory Activity by Soluble Epoxide Hydrolase (sEH) Inhibition. Foods. 2024; 13(14): 2282. |
[42] | Peris I, Blázquez MA. Comparative GC-MS analysis of bay leaf (Laurus nobilis L.) essential oils in commercial samples. International journal of food properties. 2015; 18(4): 757-62. |
[43] | Beyene R, Biru T, Dekebo A. Antibacterial and antioxidant properties and phytochemical screening of Laurus nobilis L. extract from Ethiopia. International Journal of Secondary Metabolite. 2024; 11(3): 494-506. |
[44] | Begum SN, Ray AS, Rahaman CH. A comprehensive and systematic review on potential anticancer activities of eugenol: From pre-clinical evidence to molecular mechanisms of action. Phytomedicine. 2022; 107: 154456. |
[45] | Deng YC, Chen Kl, Yu YZ, Deng ZY, Kong ZW. In vitro antifungal activity of the extract and compound from Acorus tatarinowii against seven plant pathogenic fungi. Agricultural Sciences in China. 2010; 9(1): 71-6. |
[46] | Ravi L, Krishnan K. Research article cytotoxic potential of N-hexadecanoic acid extracted from Kigelia pinnata leaves. Asian J. Cell Biol. 2017; 12: 20-7. |
[47] | Adewole E, Ajiboye BO, Idris OO, Ojo OA, Onikan A, Ogunmodede OT, Adewumi DF. Phytochemical, Antimicrobial and Gc-Ms of African Nutmeg (Monodora Myristica). Phytochemical, Antimicrobial and Gc-Ms of African Nutmeg (Monodora Myristica). 2013; 2(5): 1-8. |
[48] | Afolayan FID, Odeyemi RA, Salaam RA. In silico and in vivo evaluations of multistage antiplasmodial potency and toxicity profiling of n-Hexadecanoic acid derived from Vernonia amygdalina. Frontiers in Pharmacology. 2024; 15: 1445905. |
[49] | Purushothaman R, Vishnuram MG, Ramanathan DT. Isolation and Identification of N-Hexadecanoic Acid from Excoecaria Agallocha L. and its Antibacterial and Antioxidant Activity. Journal of emerging technologies and innovative research. 2024; 11(1): 332-42. |
[50] | Lin T-K, Zhong L, Santiago JL. Anti-inflammatory and skin barrier repair effects of topical application of some plant oils. International journal of molecular sciences. 2018; 19(1): 70. |
[51] | Alqahtani FY, Aleanizy FS, Mahmoud AZ, Farshori NN, Alfaraj R, Al-Sheddi ES, Alsarra IA. Chemical composition and antimicrobial, antioxidant, and anti-inflammatory activities of Lepidium sativum seed oil. Saudi journal of biological sciences. 2019; 26(5): 1089-92. |
[52] | Yuan Q, Xie F, Huang W, Hu M, Yan Q, Chen Z, et al. The review of alpha-linolenic acid: Sources, metabolism, and pharmacology. Phytotherapy Research. 2022; 36(1): 164-88. |
[53] | Blondeau N, Lipsky RH, Bourourou M, Duncan MW, Gorelick PB, Marini AM. Alpha-linolenic acid: an omega-3 fatty acid with neuroprotective properties—ready for use in the stroke clinic? BioMed research international. 2015; 2015(1): 519830. |
[54] | Traber MG, Atkinson J. Vitamin E, antioxidant and nothing more. Free radical biology and medicine. 2007; 43(1): 4-15. |
[55] | Lee GY, Han SN. The role of vitamin E in immunity. Nutrients. 2018; 10(11): 1614. |
[56] | Teo CWL, Tay SHY, Tey HL, Ung YW, Yap WN. Vitamin E in atopic dermatitis: from preclinical to clinical studies. Dermatology. 2021; 237(4): 553-64. |
[57] | Liu X, Yang G, Luo M, Lan Q, Shi X, Deng H, et al. Serum vitamin E levels and chronic inflammatory skin diseases: A systematic review and meta-analysis. PLoS One. 2021; 16(12): e0261259. |
[58] | Majdi M, Dastan D, Maroofi H. Chemical Composition and Antimicrobial Activity of Essential Oils of Ballota nigra Subsp. kurdica From Iran. Jundishapur J Nat Pharm Prod 2016. Jundishapur Journal of Natural Pharmaceutical Products. 2017; 12(3): e36314. |
[59] | Chinonye II, Adanna UA, Christopher A. Chemical And Medicinal Properties of Xylopia Aethiopica Harvested from The South Eastern Nigeria. Chem Pharm Res. 2022; 4(1): 1-9. |
[60] | Al-Abdullah AAA-R, Jasim EQ, Muhammad-Ali MA. Antibacterial Efficacy and Molecular Docking of Leaf Extract of Laurus nobilis L Against some Isolated Pathogenic UTI Bacteria. IOP Conference Series: Earth and Environmental Science, 2023. IOP Publishing: 012057. |
[61] | Bakun P, Czarczynska-Goslinska B, Goslinski T, Lijewski S. In vitro and in vivo biological activities of azulene derivatives with potential applications in medicine. Medicinal chemistry research. 2021; 30: 834-46. |
[62] | Slon E, Slon B, Kowalczuk D. Azulene and Its Derivatives as Potential Compounds in the Therapy of Dermatological and Anticancer Diseases: New Perspectives against the Backdrop of Current Research. Molecules. 2024; 29(9): 2020. |
[63] | Gyrdymova YV, Rubtsova SA. Caryophyllene and caryophyllene oxide: A variety of chemical transformations and biological activities. Chemical Papers. 2022; 76: 1-39. |
[64] | Moghrovyan A, Parseghyan L, Sevoyan G, Darbinyan A, Sahakyan N, Gaboyan M, et al. Antinociceptive, anti-inflammatory, and cytotoxic properties of Origanum vulgare essential oil, rich with β-caryophyllene and β-caryophyllene oxide. Korean J. Pain. 2022; 35: 140-51. |
[65] | Al-Hashimi AG, Mahmood SA. The nutritional value and antioxidant activity of bay leaves (Laurus nobilis L.). Basrah Journal of Veterinary Research. 2016; 15(2): 246-59. |
[66] | Alejo-Armijo A, Altarejos J, Salido S. Phytochemicals and biological activities of laurel tree (Laurus nobilis). Natural product communications. 2017; 12(5): 743-757. |
[67] | Zaaboul F, Liu Y. Vitamin E in foodstuff: Nutritional, analytical, and food technology aspects. Comprehensive Reviews in Food Science and Food Safety. 2022; 21(2): 964-98. |
APA Style
Offor, N. N., Chinko, B. C. (2025). Phytochemical Profiling and Health Benefits of Chloroform and Methanol Extracts of Laurus nobilis (Bay Leaf). International Journal of Biomedical Materials Research, 13(1), 10-23. https://doi.org/10.11648/j.ijbmr.20251301.12
ACS Style
Offor, N. N.; Chinko, B. C. Phytochemical Profiling and Health Benefits of Chloroform and Methanol Extracts of Laurus nobilis (Bay Leaf). Int. J. Biomed. Mater. Res. 2025, 13(1), 10-23. doi: 10.11648/j.ijbmr.20251301.12
@article{10.11648/j.ijbmr.20251301.12, author = {Ngozi Nneka Offor and Bruno Chukwuemeka Chinko}, title = {Phytochemical Profiling and Health Benefits of Chloroform and Methanol Extracts of Laurus nobilis (Bay Leaf)}, journal = {International Journal of Biomedical Materials Research}, volume = {13}, number = {1}, pages = {10-23}, doi = {10.11648/j.ijbmr.20251301.12}, url = {https://doi.org/10.11648/j.ijbmr.20251301.12}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ijbmr.20251301.12}, abstract = {Background: Laurus nobilis, commonly known as bay leaf, is widely used in global cuisine for flavouring soups and stews, as well as in baked foods and desserts. The present study aims to characterize the phytochemical composition of chloroform and methanol extracts of Laurus nobilis using Gas Chromatography-Mass Spectrometry (GC–MS) analysis. Materials and Methods: Dried Bay leaves were locally sourced, properly identified, and authenticated. The leaves were extracted using cold maceration to obtain chloroform (CELN) and methanol (MELN) extracts of Laurus nobilis. Qualitative and quantitative phytochemical screening, along with Gas Chromatography-Mass Spectrometry (GC-MS) analysis, was performed following standard protocols. Results: The qualitative analysis of CELN and MELN confirmed the presence of flavonoids, phenols, terpenoids, glycosides, steroids, saponins, alkaloids, and carbohydrates. Quantitative analysis indicated that MELN contained higher levels of phenols (11.34 mg/100g), tannins (5.20 mg/100g), and carbohydrates (16.23 mg/100g). GC-MS analysis identified 87 and 98 compounds in CELN and MELN, respectively, with 10 compounds common to both extracts. The most abundant (≥5%) compounds in MELN were Spiro(1,3,3-trimethylindoline)-2,5’-pyrrolidin-2-one (8.35%), 7,10,13-Hexadecatrienoic acid, methyl ester (12.75%), Azuleno(4,5-b)furan-2(3H)-one, 3a,4,6a,7,8,9,9a,9b-octahydro-6-methyl-3,9-bis(methylene) (9.09%), and n-Hexadecenoic acid (18.25%). For CELN, the most abundant compounds were Buta-1,3-diyne,1,4-bis(2-methoxycarbonylcyclopropyl) (5.11%), Azuleno[6,5-b]furan-2,5-dione, decahydro-4a,8-dimethyl-3-methylene-,3aR-(3aα,4a,7aα,8β,9aα) (5.75%), n-Hexadecanoic acid (5.89%), phytol (7.57%), and Benzene, 1-phenyl-4-(2,2-dicyanoethenyl) (13.91%). Conclusion: This study highlights the rich phytochemical and bioactive profile of Laurus nobilis (bay leaf) extracts, reinforcing their potential in disease management. It also underscores the need for comprehensive pharmacological investigations of its bioactive compounds to support drug discovery efforts.}, year = {2025} }
TY - JOUR T1 - Phytochemical Profiling and Health Benefits of Chloroform and Methanol Extracts of Laurus nobilis (Bay Leaf) AU - Ngozi Nneka Offor AU - Bruno Chukwuemeka Chinko Y1 - 2025/03/26 PY - 2025 N1 - https://doi.org/10.11648/j.ijbmr.20251301.12 DO - 10.11648/j.ijbmr.20251301.12 T2 - International Journal of Biomedical Materials Research JF - International Journal of Biomedical Materials Research JO - International Journal of Biomedical Materials Research SP - 10 EP - 23 PB - Science Publishing Group SN - 2330-7579 UR - https://doi.org/10.11648/j.ijbmr.20251301.12 AB - Background: Laurus nobilis, commonly known as bay leaf, is widely used in global cuisine for flavouring soups and stews, as well as in baked foods and desserts. The present study aims to characterize the phytochemical composition of chloroform and methanol extracts of Laurus nobilis using Gas Chromatography-Mass Spectrometry (GC–MS) analysis. Materials and Methods: Dried Bay leaves were locally sourced, properly identified, and authenticated. The leaves were extracted using cold maceration to obtain chloroform (CELN) and methanol (MELN) extracts of Laurus nobilis. Qualitative and quantitative phytochemical screening, along with Gas Chromatography-Mass Spectrometry (GC-MS) analysis, was performed following standard protocols. Results: The qualitative analysis of CELN and MELN confirmed the presence of flavonoids, phenols, terpenoids, glycosides, steroids, saponins, alkaloids, and carbohydrates. Quantitative analysis indicated that MELN contained higher levels of phenols (11.34 mg/100g), tannins (5.20 mg/100g), and carbohydrates (16.23 mg/100g). GC-MS analysis identified 87 and 98 compounds in CELN and MELN, respectively, with 10 compounds common to both extracts. The most abundant (≥5%) compounds in MELN were Spiro(1,3,3-trimethylindoline)-2,5’-pyrrolidin-2-one (8.35%), 7,10,13-Hexadecatrienoic acid, methyl ester (12.75%), Azuleno(4,5-b)furan-2(3H)-one, 3a,4,6a,7,8,9,9a,9b-octahydro-6-methyl-3,9-bis(methylene) (9.09%), and n-Hexadecenoic acid (18.25%). For CELN, the most abundant compounds were Buta-1,3-diyne,1,4-bis(2-methoxycarbonylcyclopropyl) (5.11%), Azuleno[6,5-b]furan-2,5-dione, decahydro-4a,8-dimethyl-3-methylene-,3aR-(3aα,4a,7aα,8β,9aα) (5.75%), n-Hexadecanoic acid (5.89%), phytol (7.57%), and Benzene, 1-phenyl-4-(2,2-dicyanoethenyl) (13.91%). Conclusion: This study highlights the rich phytochemical and bioactive profile of Laurus nobilis (bay leaf) extracts, reinforcing their potential in disease management. It also underscores the need for comprehensive pharmacological investigations of its bioactive compounds to support drug discovery efforts. VL - 13 IS - 1 ER -