Radiographic and Histologic Comparison of Two Bioactive Glass Bone Void Fillers in a Rabbit Spinal Fusion Model
James F. Kirk,
Gregg Ritter,
Michael J. Larson,
Robert C. Waters,
Isaac Finger,
John Waters,
Dhyana Sankar,
James D. Talton,
Ronald R. Cobb
Issue:
Volume 3, Issue 6, December 2015
Pages:
64-82
Received:
11 August 2015
Accepted:
27 August 2015
Published:
29 September 2015
DOI:
10.11648/j.ijbmr.20150306.11
Downloads:
Views:
Abstract: Bone graft substitutes and bone graft extenders have been routinely used for spine fusions for decades and have become an essential component in a number of orthopedic applications including spinal fusion. Bioactive glass ceramics have the ability to directly bind to bones and have been widely used as bone graft substitutes due to their high osteoconductivity and biocompatibility. The objective of this study was to compare the fusion rates of two bioactive glass containing bone void fillers (Nano FUSE® and Nova Bone Putty) in a posterolateral fusion rabbit model. Nova Bone Putty and Nano FUSE® alone and in combination with autograft were implanted in the posterior lateral intertransverse process region of the rabbit spine. The spines were evaluated for fusion of the L4-L5 transverse processes in skeletally mature rabbits. Radiographical and histological measurements demonstrated the ability of Nano FUSE® to induce new bridging bone across the transverse processes. The material in combination with autograft performed much better than the material alone. In contrast, Nova Bone Putty did not induce bridging bone across the transverse processes at any time point. This in vivo study demonstrates the novel formulation of Nano FUSE®, a bioactive glass combination with porcine gelatin, could be an effective bone graft extender in posterolateral spinal fusions.
Abstract: Bone graft substitutes and bone graft extenders have been routinely used for spine fusions for decades and have become an essential component in a number of orthopedic applications including spinal fusion. Bioactive glass ceramics have the ability to directly bind to bones and have been widely used as bone graft substitutes due to their high osteoc...
Show More
Characterization of Physicochemical and Thermal Properties of Biofield Treated Ethyl Cellulose and Methyl Cellulose
Mahendra Kumar Trivedi,
Alice Branton,
Dahryn Trivedi,
Gopal Nayak,
Rakesh Kumar Mishra,
Snehasis Jana
Issue:
Volume 3, Issue 6, December 2015
Pages:
83-91
Received:
23 October 2015
Accepted:
18 November 2015
Published:
21 December 2015
DOI:
10.11648/j.ijbmr.20150306.12
Downloads:
Views:
Abstract: Cellulose and its derivatives are used as potential matrices for biomaterials and tissue engineering applications. The objective of present research was to investigate the influence of biofield treatment on physical, chemical and thermal properties of ethyl cellulose (EC) and methyl cellulose (MC). The study was performed in two groups (control and treated). The control group remained as untreated, and biofield treatment was given to treated group. The biofield treated polymers are characterized by Fourier transform infrared spectroscopy (FT-IR), CHNSO analysis, X-ray diffraction study (XRD), Differential Scanning calorimetry (DSC), and thermogravimetric analysis (TGA). FT-IR analysis of treated EC showed downward shifting in C-O-C stretching peak from 1091→1066 cm-1 with respect to control. However, the treated MC showed upward shifting of –OH stretching (3413→3475) and downward shifting in C-O stretching (1647→1635 cm-1) vibrations with respect to control MC. CHNSO analysis showed substantial increase in percent hydrogen and oxygen in treated polymers with respect to control. XRD diffractogram of EC and MC affirmed the typical semi-crystalline nature. The crystallite size was substantially increased by 20.54% in treated EC with respect to control. However, the treated MC showed decrease in crystallite by 61.59% with respect to control. DSC analysis of treated EC showed minimal changes in crystallization temperature with respect to control sample. However, the treated and control MC did not show any crystallization temperature in the samples. TGA analysis of treated EC showed increase in thermal stability with respect to control. However, the TGA thermogram of treated MC showed reduction in thermal stability as compared to control. Overall, the result showed substantial alteration in physical, chemical and thermal properties of treated EC and MC.
Abstract: Cellulose and its derivatives are used as potential matrices for biomaterials and tissue engineering applications. The objective of present research was to investigate the influence of biofield treatment on physical, chemical and thermal properties of ethyl cellulose (EC) and methyl cellulose (MC). The study was performed in two groups (control and...
Show More